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Abstract
We present a novel and effective method for modeling a developable surface to simulate paper bending in interac-
tive and animation applications. The method exploits the representation of a developable surface as the envelope
of rectifying planes of a curve in 3D, which is therefore necessarily a geodesic on the surface. We manipulate the
geodesic to provide intuitive shape control for modeling paper bending. Our method ensures a natural continu-
ous isometric deformation from a piece of bent paper to its flat state without any stretching. Test examples show
that the new scheme is fast, accurate, and easy to use, thus providing an effective approach to interactive paper
bending. We also show how to handle non-convex piecewise smooth developable surfaces.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Paper is commonly used material. Therefore its shape mod-
eling and animation is of great interest to computer graph-
ics. We are interested in interactive modeling of paper bend-
ing, or more specifically, continuous smooth deformation of
a piece of paper without creasing, while maintaining its size,
i.e., allowing no size stretching or shrinking.

Under smooth bending, paper, like metal sheets, can be
assumed to be inextensible, and therefore assumes the shape
of a developable surface, also called adevelopable. While
developable surfaces are thoroughly studied in differential
geometry and a variety of numerical representations or meth-
ods have been proposed, their shape modeling with com-
puter is still a difficult task due to the following issues:

1. The developability condition needs to be enforced, often
present as a nonlinear constraint;

2. The curve of regression, i.e., the singular curve, needs to
be kept out of a relevant finite patch in application;

3. The set of parameters of a chosen representation of a de-
velopable should be minimal and preferably serve as in-
tuitive control handles in interactive applications;

4. Modeling paper bending imposes the additional require-
ment that the developable patch representing the paper
have an isometric correspondence to the paper in its flat

state, i.e., stretching or shrinking of the paper size is not
allowed.

The last requirement means that there is an isometric map-
ping from a bent paper to apre-specifiedplanar region,
which is the same paper in its flat state. We stress that mod-
eling a general developable surface patch only requires that
the patch can be isometrically mapped tosomeplane region
which is not necessarily fixed.

We present a new approach to modeling paper bending
that addresses all the four issues above in a natural manner.
This method is based on the fact that a developable surface
is uniquely determined by a geodesic curve on it; that is to
say, if we specify a smooth curve in 3D and designate it as
the geodesic curve on some developable surface, then this
developable surface exists and is unique, except for the case
where the curve is a straight line, which is the geodesic of all
the planes containing it. In fact, this developable is also easy
to compute, since it is defined by the envelope of the rectify-
ing planes of the given curve, also called arectifying devel-
opable. Although the rectifying developable is well known
in differential geometry, to the best of our knowledge, it has
not been used in practical shape modeling applications.

The use of a geodesic to specify a developable also pro-
vides the following advantages: (1) a 3D curve is easy to
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specify and manipulate, compared with many other com-
monly used representations of developables; (2) As we shall
see, the geodesic curve offers intuitive shape control for in-
teractively modifying the shape of a paper; (3) the use of the
geodesic curve induces naturally an isometric mapping from
the bent paper to its flat state, as well as allows simple com-
putation of this mapping. These properties make this new
method an effective tool for interactive paper modeling.

2. Related works

Developable surfaces.Paper sheets or metal sheets are prac-
tically inextensible or nearly so. Therefore, they are natu-
rally represented by developable surfaces. For this reason,
much research has been conducted on the computer rep-
resentation of developables. One may model developables
as Bézier or B-spline ruled surfaces satisfying the devel-
opability condition via nonlinear constraints [CS02,Aum04,
Aum91, Aum03, CM98]. Since a developable corresponds
to a curve in dual space, duality provides another method
of representing a developable as a 3D curve [PW99,PF95,
MBR93]. This scheme is mathematically elegant but suffers
from the lack of intuitive connection between the shape of
a curve in dual space and the shape of its corresponding de-
velopable. A similar idea is to use the spherical mapping of
a developable surface to control its shape [Red89].

There has recently been strong interest in using devel-
opable surface for mesh segmentation and parametrization
[BVI91, SH05, YGZS05, PC04]. Unfolding a surface to a
plane with as little distortion as possible is also widely in-
vestigated in texture mapping, known as the problem of tex-
ture atlas generation [JKS05]. Developable surfaces have
been used for fitting 3D point data [Pet04], in garment de-
sign [DJW∗06], paper crafting [MS04], and architecture de-
sign [LPW∗06].

Paper modeling. There are some geometric methods
for paper shape modeling, taking advantage of the proper-
ties of developable surfaces. Paper creasing is considered
in [KGK94, Fre04]. Yannick et al [KGK94] represent pa-
per shape by its boundary and a mapping between boundary
points is used to define rulings. This method naturally keeps
singular points out of the region of the paper, but is difficult
to apply to paper of general shapes. Another drawback is that
the mapping between boundary points does not relate to the
shape of paper in an intuitive manner.

Recovery of smooth paper shape from images is widely
studied in computer vision for OCR with curled paper doc-
uments. Nail et al [GZDD06] recovers a paper shape from a
contour in an image and its corresponding boundary curve
in 3D by solving a system of differential equations. The
vanishing curvature property of paper-like surfaces is used
to recover paper structure from multiple images in [PB06].
Pilu [Pil01] recovers the planar state of a distorted image of
a book page by a relaxation strategy guided by measuring
isometry.

Figure 1: A 2D illustration for the concept of envelope. This
example shows a parabola as the envelope of a family of
straight lines in a plane.

Inextensible material simulation. Inextensible materi-
als, like papers, metals, and clothes, can also be represented
in discrete forms, e.g., triangle meshes or finite elements.
Bending and stretching are simulated by following laws of
elastic mechanics, using mass-spring networks. Resistance
to bending is modelled by diagonal springs connected to op-
posite corners of adjacent mesh faces [NMK∗06]. Grinspun
et al [GHDS03] propose a simple technique for simulat-
ing thin-shells. Bergou et al define discrete isometric bend-
ing model which is quadratic in position, achieving efficient
simulation of clothing and thin-plates [BWH∗06]. There are
also works using finite elements methods for un-stretchable
materials simulation [Got00, NMK∗06]. Zorin [Zor05] dis-
cusses the general principles of defining curvature-based en-
ergy on discrete surfaces based on geometric invariance and
convergence considerations.

3. Representation of paper shape

3.1. Rectifying developable

A developable surface is defined as the envelope of a one-
parameter family of planes. (An envelope of a family of
manifolds is a manifold that is tangent to each member of
the family at some point. Figure1 shows the envelope of a
family of lines in 2D space, which is a parabola.) The limit
positions of the intersection lines of neighboring planes are
on the developable surface and calledrulings. Given a 3D
curve with non-vanishing curvature, the envelope of its rec-
tifying planes is a developable surface, called therectifying
developable, and the curve is a geodesic on the rectifying de-
velopable [Str61]. After unfolding the surface to a plane, the
curve becomes a straight line. Figure2 show a developable
surface together with a geodesic curve on it.

In the following we give the expression of the rectifying
developable surface of a given geodesic curvep(s), wheres
is arclength. We assume thatp(s) has up to the third order
derivative. Suppose thatp(s) is a geodesic on a developable
surfaceΠ. Then the principal normal directionp′′(s) of p(s)
is normal toΠ at the pointp(s). It is known that all the points
on the same ruling of a developable surface have the same
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Figure 2: Rulings on a developable surface are computed
from a geodesic curve on the surface, which is completely
determined by any geodesic on it.

normal direction, i.e., all points on the same ruling have the
same tangent plane. Therefore,p′′(s) is the normal to the
corresponding tangent plane. Since the rulings are limit in-
tersections of neighboring tangent planes, it can be shown

that the ruling direction isp′′(s)
|p′′ (s)| × ( p′′(s)

|p′′ (s)| )
′ [Car76]. After

simplification, we get the ruling directionp
′′(s)×p′′′(s)
|p′′(s)|2 . The

rectifying developable ofp(s) can therefore be expressed as

X(s, t) = p(s)+ t(p′′(s)× p′′′(s)). (1)

The ruling direction can also be expressed in terms of the
Frenet frame, asr(s) = τT + κB, whereτ is torsion andκ
is curvature, andT andB are unit tangent vector and unit
binormal vector. This vectorr(s) is known as the Darboux
vector [Gra35], which is the instantaneous rotation axis of
the Frenet frame.

3.2. Curve of regression

A general developable surface is singular along the curve of
regression [PW01]. Thus it is important to know where the
curve of regression exactly is and keep it out of the region of
interest when a smooth surface patch is needed. Below we
will derive the expression of the curve of regression in the
context of a rectifying developable.

The curve of regression is the curve consisting of limit in-
tersections of rulings. Due to the length preserving and angle
preserving properties of isometry, the intersection of rulings
can be computed in the plane. (Refer to Figure3.) Let p(s)
be the current point andp(s+∆s) be a neighboring point on
a geodesic. Let̄p(s) and p̄(s+ ∆s) be their corresponding
points on the initial flat paper in the plane. Letq̄(s) be the
intersection point of the rulings passing through̄p(s) and

Figure 3: On a flat piece of a paper,̄q(s) is the intersection
point of the two rulings at the points̄p(s) and p̄(s+ ∆s) on
a straight line corresponding to a geodesic curve in 3D.

p̄(s+ ∆s). Let A be the triangle formed bȳp(s), p̄(s+ ∆s)
andq̄(s). Let α(s) andα(s+ ∆s) be the angles between the
tangent direction and ruling direction atp(s) andp(s+ ∆s),
respectively. Since isometry is angle-preserving, these an-
gles on the curved geodesic are equal to their corresponding
angles on the initial planar paper.

By the sine law, we have

sin(α(s+∆s)−α(s))
∆s

=
sin(α(s+∆s))

l(s)
, (2)

wherel(s) is a signed distance from the current pointp(s)
on the geodesic curve to the ruling intersection pointq(s), or
equivalently, fromp̄(s) to q̄(s) (see Figure3). By the Taylor
expansion ats, α(s+∆s) can be expressed as

α(s+∆s) = α(s)+α′(s) ·∆s+o(∆s). (3)

Plugging (3) in (2) and letting∆sapproach zero, we have the
limit expression ofl(s) as

l(s) =
sin(α(s))

α′(s)
. (4)

The curve of regression can therefore be expressed as

c(s) = p(s)+ l(s)
(

p′′(s)× p′′′(s)
|p′′(s)× p′′′(s)|

)
(5)

3.3. Paper boundary and admissible shape

When a piece of paper is bent, it boundary curve also
changes its shape in 3D. In this section we discuss how to
compute the boundary of a piece of bent paper and use it to
ensure that the bent paper takes only an admissible shape,
i.e., keeping out the curve of regression. The boundary of a
paper in its flat state is firstly defined and the correspond-
ing boundary in 3D space needs to be computed. Using the
isometry between the bent paper and its flat state, we will
determine its boundary by explicitly computing points on it.

Recall that each ruling on the paper is associated with a
point on the geodesicp(s). Therefore, each ruling will in-
tersect the boundary of the paper at two points, one on each
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side of the geodesic. That is, we practically ignore all other
intersections beyond these first two intersections on the two
sides of the geodesic.

Let p(s) be the geodesic curve on the bent paper andr(s)
be the ruling direction atp(s). Under the isometry between
the bent paper and its flat form, let̄p(s) be the straight line
corresponding to the geodesicp(s), andr̄(s) the correspond-
ing ruling direction ofr(s) on the flat paper. Now, to compute
boundary points, we start from one endpointp0 to sample a
sequence of points along the geodesic curvep(s). At each
sampled positionp(si), we compute two boundary points on
the ruling passing throughp(si) by the following algorithm.

1. Compute the arclengths from the start pointp0 to current
point p(si) along the geodesic. Then mapp(si) to p̄(si)
on the initial plane, by measuring lengths from p̄0. Here
the length preserving property of isometry is used.

2. Compute the angle between the tangent ofp(si) and the
ruling directionr(si) at p(si). Use this angle to map the
ruling direction vectorr(si) to the direction̄r(si) at p̄(si).
Here the angle preserving property of isometry is used.

3. Compute intersection points̄c0 and c̄1 of r̄(si) with the
given boundary of the paper in its flat state in the plane.
Let l0 andl1 be the distances from̄p(si) toc0 andc1. Note
thatl0 andl1 are signed distances, withl0 > 0 andl1 < 0,
sincec̄0 andc̄1 are on different sides of the geodesic.

4. Finally, the two boundary points on the bent paper are ob-
tained by measuring distancesl0 andl1 along the current
ruling with directionr(si) at the pointp(si).

By going through all the points on the geodesicp(s), the
algorithm above produces all points on the boundary of the
bent region explicitly, except for the undefined regions. (See
the example in Figure4.) These uncontrolled regions are
treated as planar regions and attached to the curved regions
smoothly along their shared edges. This is further explained
in Section4.2.

The shape of a paper is said to beadmissibleif as a devel-
opable patch it is free of singular points except at its bound-
ary; that is, it does not contain in its interior any points on
the curve of regression. Since we have obtained the position
of the curve of regression from Eqn. (4) and Eqn. (5), the
condition for a piece of paper to be admissible is therefore

l(s)≥ l0(s) or l(s)≤ l1(s). (6)

This is illustrated in Figure5.

This algorithm maps every point on a paper to its corre-
sponding point on its flat state, thus produces a development,
as well as an isometric parametrization of the bent paper,
which can be used for distortion-free texture mapping. See
Figure6.

3.4. Composite developable surface

So far we have shown how to represent a piece of paper using
a single developable patch, i.e., with one group of rulings
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(b)

Figure 4: Boundary computation. (a) Boundary points are
computed using the rulings along the geodesic curve; (b)
The flat state of the paper. The two corner regions un-
covered by the rulings are planar.

(a) (b)

Figure 5: Condition for admissible shape. The touching
point Ā of l(s) and l0(s) in (b) corresponds to a singular
pointA on the boundary of the paper in (a).

on one geodesic curve. But a piece of paper often consists
of curved developablesjoined together by transition planar
regions [Car76]. (See Figure7.) Such a shape will be called
acomposite developable surface. Planar patches also appear
in corner regions which are free from control by the rulings
passing through a geodesic curve segment.

When a curved developable is joined with a planar piece
of paper, we need to ensure that the tangent plane along the
last ruling of the curved piece contains the planar piece. Note
that this tangent plane is spanned by the tangent vector and
ruling vector at the end point of the geodesic curve. When
the paper is being bent, the shared edges between curved de-
velopables and planar regions may change. We will describe
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Figure 6: A textured paper as a composite developable sur-
face. The bent paper is isometric to its flat state, which is
used here as the domain for distortion-free texture mapping.

Figure 7: Here we show the curved parts and planar part of
the composite paper in Figure6.

a method for ensuring smooth connections of different re-
gions in Section4.2.

4. Interactive modification

In a paper editing session we first define the boundary of
paper in its flat state and its structure, i.e., the arrangement
of planar regions and curved regions. Each curved region is
assigned a traversal straight line as the designated geodesic.
Then a composite developable surface is generated in real
time manner from a geodesic curve that the user specifies
interactively in 3D. By controlling the specified geodesic
curve, the paper shape will change accordingly. Hence, this
geodesic is called thecontrol geodesic. Control geodesics
are represented as polynomial curves in our experiments; we
use Bézier curves and B-spline curves.

4.1. Editing tools

4.1.1. Control points

When using a Bézier or B-spline curve as the control
geodesic, the shape of the geodesic curve can be modified
directly by moving their control points, and that causes the
paper to change its shape accordingly. This provides intuitive
shape control. See Figure8.

(a) (b)

Figure 8: Shape editing. (a) The shape is modified by mov-
ing the control points of a geodesic Bézier curve; (b) The
shape is modified by controlling the two handles defined at
two endpoints of a geodesic curve. A handle is normal to the
surface.

4.1.2. Control handles

While the control points of the Bézier geodesic curve is intu-
itive for editing a developable surface, it is still quite differ-
ent from the human experience of paper bending. Normally,
a piece of paper is bent with two hands hold at two positions
of the paper. This motivates us to consider how to use two
control handles to simulate this operation.

In this mode a geodesic curve still serves as the under-
lying control represenration. But now they are computed
from interpolating the positions and orientation vectors at
the two ends, which are specified by the two control han-
dles. Each control handle consists of aposition handleand
a normal handle; the position handle specifies the endpoint
of the geodesic and the normal handle specifies a direction
parallel to the principal normal vector of the geodesic at the
end point, which is also normal to the developable to be gen-
erated.

When the control handles are modified, a new interpo-
lating control geodesic is determined by computing control
points of a Bézier curve or B-spline curve representing the
geodesic. We use a Bézier curve of degree 4 or higher in our
experiments.

When a Bézier curve is used as control geodesic, the curve
is expressed asP(t) = ∑n

i=0 PiBi,n(t), t ∈ [0,1], wherePi are
control points andn is the degree. Control handles are de-
fined at the end control points of the Bézier curve. Thus the
position control is easily realized by the Bézier curve inter-
polating its end control points. The principle normal direc-
tion of P(t) is N(t) = (P′(t)× P′′(t))×P′(t). LetN0 = N(0)
andN1 = N(1) denote the principle normals at the two end-
points. ThenN0 andN1 can be expressed in terms of control
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points [Far96] as follows

N0 = λ(P1−P0)× (P2−2P1 +P0)× (P1−P0),
N1 = λ(Pn−Pn−1)× (Pn−2Pn−1 +Pn−2)× (Pn−Pn−1),

whereλ = n3(n−1).

Let N̄0 andN̄1 be the desired unit normal vectors specified
interactively at the two endpoints. Then the constraints for
the new control geodesic curve are

N0 = a0 · N̄0
N1 = a1 · N̄1

(7)

for some nonzero constantsa0 anda1.

The above constraints (7) in general cannot determine a
relatively high degree interpolating Bézier curve uniquely.
So we solve for the interpolating curve by minimizing the
following objective function, in order to ensure the continu-
ity of the control geodesic curve with respect to the continu-
ous input control:

f (∆X) = | N0

|N0|
− N̄0|2 + | N1

|N1|
− N̄1|2 +λ · |∆X|2,

where∆X = (∆P1, . . . ,∆Pn−1) are the increments to the con-
trol points. The|∆X|2 term is used to ensue a gradual change
of the geodesic curve. Its coefficientλ is set to 0.1 in our ex-
periments.

We minimzef (∆X) using the optimziation module in the
IMSL library, which is a quasi-Newton method [IMS]. Al-
though we do not always obtain exact interpolation to the
desired normals̄N0 andN̄1, the performance is satisfactory
as a real time interactive shape editing tool. (See Figure8(b)
for an example.) This algorithm is incremental and the result
of each update depends on the previous state.

4.1.3. Curve length preserving

Since our method controls the shape of paper by modifying
a curve on it, we need to preserve the length of the curve
during interactive manipulation. Modifying a curve with its
length preserved is a non-trivial task. We use the a simple
strategy with Bézier curves to control geodesic curves to ap-
proximately achieve length preservation.

Suppose that a geodesic curve is modified by the user
to give the current geodesicP(t), t ∈ [0,1]. We start from
the endpointP(0) of the geodesic to measure a fixed length
using numerical integration. Suppose that we stop at point
p(t1). Then we find the Bézier control points of the curve
segmentP(t), t ∈ [0, t1], and reparameterize it to be the new
geodesic control curve, denoted byP̂(t̂), t̂ ∈ [0,1]. Because
the user normally makes continual and incremental change
to the end positions and normals, there is only a slight dif-
ference between the exact interpolating curveP(t), t ∈ [0,1],
and the modified curvêP(t̂), t̂ ∈ [0,1]. This change is usually
small and within acceptable level in our experiments.

After the above reparameterization, the control points of

the curve will be shifted in general. LetPi be the control
point being edited or dragged. Suppose thatPi is shifted to
P′i due to the reparametrization. Then we translate the entire
curveP̂(t̂) by Pi−P′i so that the new position ofPi is always
preserved, giving the natural impression that the curve is be-
ing dragged by the change ofPi , while preserving its length.

(a) (b)

Figure 9: Curve length preserving. The strip in (b) is ob-
tained by dragging the lowest control point of the strip in
(a). The length of the geodesic curve is preserved.

4.2. Modifying composite shape

A composite developable shape contains both curved and
planar regions joined together smoothly. A piece in a com-
posite developable surface does not change its type (i.e.,
planar or curved) during editing process. As shown in Fig-
ure10, when modifying a geodesic curve on the curved piece
A, the shape of its neighboring planar pieceB changes ac-
cordingly; butB is always on the tangent plane alongA’s
end ruling which abutsB. The updated shape ofB is deter-
mined from the structure of paper’s flat state and the changed
rulings of A. So we just need to wield the polygonB to
its shared edge withA using a rigid transformation. Other
regions connected toB are then transformed by the same
transformation. Figure11 shows an example of a composite
developable with two curved pieces controlled by moving
Bézier control points.

4.3. Admissible shape during editing

A condition for a single developable piece to be admissible
is presented in Section3.3. For a composite piece, in addi-
tion to constraining each piece to be admissible, the rulings
of different pieces are not allowed to intersect each other in-
side the paper region. During shape editing, we check the
condition (6) after modification for each developable piece
and prevent rulings of different pieces from intersecting each
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Figure 10: Editing a composite developable shape. After
geodesic on curved regionA is edited, the boundary of its
neighboring planar regionB is obtained from paper’s flat
state and is smoothly attached toA at their shared edge.

Figure 11: Editing a composite developable shape. There
are two curved pieces, each being determined by a Bézier
geodesic curve generated by control point manipulation.

other inside the paper region. Note that this latter intersec-
tion test only needs to be performed for the end rulings of
different developable pieces.

5. Examples and Extension

Using the proposed representation of geodesic-controlled
developables, we can model papers of different shapes, con-
cave or even with holes, as well as closed paper strips. See
the examples in Figure12. These examples are designed by
first defining their planar structure and geodesic curves on
their planar counterparts and then manipulating the control
geodesics. Figure15and Figure16show a desk, a chair and
an architectural model designed with our method.

Given an initial developable surface, it is possible to spec-
ify a geodesic curve on it and animate the surface by directly

editing this curve, i.e., without explicitly referring to the pa-
per’s flat state. Such a test example is shown in Figure14.
Here, we select a circle (i.e., a geodesic) on a circular cylin-
der and deform the cylinder by modifying the circle into dif-
ferent shapes. The length of the control curve is preserved
by scaling.

The idea of control geodesics can be extended to non-
geodesic curves. With an arbitrary curvep(s) on a devel-
opable surface which is not a geodesic curve, its correspond-
ing curve p̄(s) under isometry in the plane is no longer a
straight line. Now we are going to find a unique developable
containingp(s) such that the geodesic curvature ofp(s) on
Π is the same as the curvature of the planar curvep̄(s)
(which is also the geodesic curvature ofp̄(s)), i.e., meet-
ing the requirement that the geodesic curvature be preserved
during paper bending.

It is well known that the principal normalp′′(s) can be de-
composed into the direct sum of the geodesic curvature vec-
tor g(s) and the normal curvature vectorn(s); and these three
vectors are in the plane normal to the tangent vectorp′(s).
Recall that the geodesic curvature is preserved by isometry.
Suppose that we know the curvaturec(p̄(s)) of p̄(s), which
can easily be computed. Then we have|g(s)| = c(p̄(s)).
Now, knowing the value|g(s)| and the curvature vector
p′′(s), we can easily find the normal curvature vectorn(s).
Then the developable surfaceΠ to be constructed is the en-
velope of the planes passing throughp(s) and havingn(s) as
their normal vectors. An example generated using this tech-
nique is shown in Figure13, where the selected control curve
is a circular arc adapting to the shape of the paper strip.

Using an arbitrary curve on a developable as a control
curve has certain advantages when it is difficult to find a
geodesic curve on the developable. Clearly, the use of a
geodesic curve is a special case where the geodesic curvature
is zero. However, we note that when using an arbitrary pla-
nar control curvēp(s), the curvature|p′′(s)| of the modified
curve p(s) is required to be larger than the geodesic curva-
ture of p̄(s) for everys. This leads to the interesting problem
to constraining the control curvep(s) to have bounded cur-
vature during shape editing. We leave this as a problem for
future research.

6. Discussions and Future works

Using a geodesic curve to control the shape of a developable
surface has many advantages, including intuitive control and
ease of preventing singular points in the region of interest.
We have shown that this approach is suitable for bending
paper or other non-stretchable materials in interactive appli-
cations. In this context, we will further investigate the rep-
resentation of the control geodesic curve with length pre-
serving property. In our current implementation, numerical
integration is used to modify the control geodesic curve to
make its length constant. We believe the 3D PH curve holds
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(a) (b)

(c)

Figure 12: Developable surfaces generated from geodesic
curves. Different colors are used to illustrate different
pieces, i.e, curved developables and planar pieces.(a) A lo-
cal control example; (b) a paper with hole on it; (c) a closed
paper strip.

Figure 13: Editing a developable surface using an arbitrary
curve on it. In this example, the planar curve is a circular
arc.

the promise of providing an elegant solution to this prob-
lem [FH03].

Our technique is based on the well known concept of rec-
tifying developables and it is the first time this representation
of developables is applied to shape modeling and design.
We hope this representation can find more applications in
shape modeling. Some promising applications include sur-
face unfolding [SE06] and using developable surface to fit
some nearly developable target shapes [Pet04].

(a) (b) (c)

Figure 14: Deformation of a tube. We deform the shape of a
cylinder by first specifying a circle on it and modifying the
circle.
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Figure 15: A desk and a chair designed with our methods.
The desk model is composed of four curved developables as
legs and a transition planar region as the desktop. The chair
model is made of developable surfaces with concave bound-
ary and holes.
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